

USER MANUAL

INTRODUCTION

We appreciate your purchase of a Limit Analyser type Sycon 2501 Fe for the online monitoring of the iron content of water.

The Limit Analyser is part of a water treatment plant. Distribution of this manual is intended for the manufacturer and the owner of this plant.

This user's manual covers instructions for the use of your Limit Analyser. Please read through this manual and understand the contents before using the system.

We recommend that the manual be kept nearby for reference when operating the Limit Analyser system.

Operate the system only in accordance with the instructions given in this manual.

Under no circumstances whatsoever will we be liable for damages arising from the user's failure to follow the instructions given in this manual.

• Some details of the instructions contained in this manual may be different from the actual system purchased. The instructions are also subject to change without prior notice.

The Limit Analyser based on the Sycon 2501 series is an on-line analysis system. It can automatically monitor iron leakage in water treatment plants and issue an iron leakage alarm.

It is not a system that remedies iron leakage itself.

	Таві	LE OF CONTENTS	PAGE
SUMMARY SYCON 2501 SERIES 6			
CHAPTER 1	SAFI	ETY WARNINGS / PRECAUTIONS / SYMBOLS USED	7
CHAPTER 2	SPE	CIFICATION AND OVERVIEW	11
	2.1	SPECIFICATION AND INTENDED USE	11
		\rightarrow General Specification	
		\rightarrow TECHNICAL DATA	
		\rightarrow Monitoring capabilities	
		\rightarrow Water inlet and outlet	
		\rightarrow AVAILABLE REAGENTS	
		\rightarrow Accessories	
	2.2	OVERVIEW AND CONFIGURATION	13
	2.3	DISPLAY AND CONTROL BUTTONS	14
	2.4	Spare Part List	15
	2.5	OPERATION PRINCIPLE	16
	2.6	FUNCTIONS	17
CHAPTER 3	INST	ALLATION AND COMMISSIONING	19
	3.1	INSTALLATION REQUIREMENTS	19
	3.2	INSTRUCTIONS FOR INSTALLATION	19
	3.3	MOUNTING IN 4 STEPS	20
		\rightarrow Terminal Connection Table	
		\rightarrow Instruction for Wiring and Connection	
		\rightarrow Mounting Dimensions	
	3.4	CONNECTING RELAY-OUTPUT	25
	3.5	CONNECTING DIGITAL INPUTS	26
CHAPTER 4	OPE	RATION AND USE	27
	4.1	SUMMARY OF SYCON 2501 SYSTEM	27
	4.2	BEFORE INITIAL OPERATION	28
	4.3	PROGRAMME SWITCHES	29
	4.4	SETTING THE PROGRAMME SWITCHES	30
		\rightarrow FLUSH TIME	
		\rightarrow Delay Intervals	
		\rightarrow ANALYSIS INTERVALS	
		\rightarrow Analysis repetition	
		\rightarrow Relay Function	
		\rightarrow Measurement-Parameters	
	4.5	COMMISSIONING IN 5 STEPS	36
	4.6	OPERATION OF THE UNIT	37
		\rightarrow AUTOMATIC OPERATION	
		\rightarrow Manual operation	

41

48

CHAPTER 5 MAINTENANCE AND SERVICE

- \rightarrow Changing Peristaltic Dosing Pump
- $\rightarrow~$ Cleaning of the Measuring-Chamber
- → CHANGING WORN PARTS
- \rightarrow Changing Reagent Bottle
- \rightarrow Changing Spare Parts

CHAPTER 6 DIAGNOSTIC FUNCTION

- $\text{TEST OF} \ \rightarrow \ \text{LEDs}$
 - \rightarrow Control-Button
 - → DIP Switch
 - \rightarrow POTENTIOMETER
 - \rightarrow Relay 1 + 2
 - $\rightarrow \quad \text{Solenoid Valve}$
 - \rightarrow Actuator LED
 - $\rightarrow \quad \text{DOSING PUMP}$
 - \rightarrow Magnetic Agitator
 - \rightarrow 'IN' Contact
 - \rightarrow ZERO-TRANSMISSION
 - \rightarrow Colour detection

SUMMARY SYCON 2501 SERIES

With the Limit Analyser, RLS Wacon offers a very compact and easily operated water analyser for automatic on-line monitoring of water treatment plants. The system controls selectable limit values according to the colorimetric principle. A broad range of functions guarantee reliable field-operation. Units can be supplied in standard as well as tailor-made housings

Application:

ightarrow Limit monitoring (below and above limit detection)

 \rightarrow suitable for operation without permanent supervision (BOB)

Order numbers

Limit Analyser

SYCON 2501 Fe	30-010321
Standard enclosure	33-099005

Reagents

Fe-LRS	0.03 – 0.6 mg Fe/l	32-080320
Fe-HRS	0.3 – 6.0 mg Fe/l	32-080330

CHAPTER 1 SAFETY WARNINGS AND PRECAUTIONS

This Chapter explains the dangers, precautionary signs and notes that apply to the handling, installation, wiring and maintenance of the SYCON 2500 series Limit Analyser. These instructions are not a substitute for vocational training.

This manual describes the installation and operation of the on-line analyser of type Limit Analyser Fe based on SYCON 2501 series. Installation and commissioning must only be performed by qualified personnel.

Operate the system only in accordance with the instructions given in this manual. In particular, the system has to be protected against humidity and moisture. Avoid direct contact with splash or condense water. The device may only be used for the specified purpose. When installing and operating the equipment, the relevant standards (e.g. EN, DIN, VDE, UVV) and applicable local regulations must be complied with.

The analyser is used to monitor the limits of the iron content in process water. Proper operation can only be guaranteed with the manufacturer's recommended reagents and spare parts.

Changes to the electrical connections and the programming should only be performed by a qualified person.

If it is necessary to connect cables for the sensors they should be kept as short as possible and not run together with power cables. The vicinity of a strong electromagnetic field may lead to deviations of evaluation and measurement results. In such cases, appropriate measures must be taken to suppress interferences. EMC-directives are especially applicable.

When working with this manual, it is recommended to have access to the operational instrument in order to understand the functions described immediately. Read the chapters in the order given.

If you have questions regarding the operation of the instrument, or when problems occur, please contact us or one of our distributors. Try to locate problems as accurately as possible. Also describe what actions you have taken and which conditions lead to the problem. We will then be in a better position to help you.

Safety instructions and symbols used

In this manual you will find specific safety instructions to indicate the unavoidable residual risks when operating the unit. These residual risks imply dangers to

- People
- Product / Plant / Machinery
- Environment

The symbols used in the instructions draw attention in particular to the safety instructions!

The main objective of the safety precautions is to prevent personal injury. The symbol used in each case cannot replace the text of a safety warning. Therefore, the text must always be read completely.

This symbol indicates a potential danger to persons.

- → mortal danger
- \rightarrow risk of injury
- A safety notice with warning triangle DANGER points out that risks to plant, machinery, materials, environment and people are not excluded

This symbol indicates a potential danger to product, plant and machinery

 A safety notice with warning triangle WARNING points out that risks to plant, machinery, materials and/or environment are not excluded.
 Danger to persons is not necessarily to be expected.

This symbol points to hydraulic and pneumatic systems and indicates pressurised systems.

This symbol indicates electric and electronic systems.

This symbol indicates no safety information, but information to improve understanding of the plant or machine processes. PRESSURE

WARNING

Work on hydraulic and pneumatic equipment

- Maintenance and repair of hydraulic and pneumatic equipment should be carried out by specially trained personnel!
- Before all maintenance and repair work, the pneumatic and hydraulic equipment of the system / machine must be depressurised!
- During preventive maintenance, pipes should be changed regularly, even if there is no visible damage (Please note the information provided by the manufacturer).
- Before starting up after maintenance or repair work,
 - $\rightarrow\,$ Check the screw connections for a tight fit and that push-in fittings are secured.
 - $\rightarrow\,$ Ensure that the container lid, screens or filters are re-installed in the correct order.
- After completion of the maintenance and repair services, and before the resumption of operation, make sure that...
 - → ...all the materials, tools and other equipment required for the execution of maintenance or repair work are removed from the work area!
 - \rightarrow ...any leaked fluids are removed!
 - \rightarrow ...all safety devices of the system work properly again!

Transportation

Use appropriate equipment to transport the system to prevent damage during transport.

- Transport equipment carefully and do not throw it!
- Choose a cool and dry storage location.
- Pay attention to the permitted ambient temperatures!
- Check the entire delivery immediately upon receipt for completeness and shipping damage
- Devices are packed in a transport-safe packaging. Nevertheless, damage could occur during transit. Please tell the transport company and the manufacturer in writing IMMEDIATELY no later than eight days after receiving the goods of the details of the damage. In this case, you must keep the instrument and the packaging for inspection for the further processing of the complaint.

NOTE

Storage

We recommend storing equipment no longer than a year to avoid loss of the warranty. Store the equipment under the following conditions.

- Cool and dry location.
- Ambient temperature between 0 and 45 °C.

Shipment

Shipment consists of:

- Equipment in accordance with the confirmation of order,
- Operating Manual

Check that all parts were delivered.

Obvious damage and / or missing components must be reported in writing within 8 days of receipt of goods. After that, no complaints will be accepted

Installation

•

- Install the system in accordance with the following sequence will save you time and avoid damage which could lead to malfunction.
- Mount the device:
 - \rightarrow Place the unit in a dry, easily accessible and conspicuous place.
 - → Drill holes in the wall according to template (typically, these are four holes) and mount the device using suitable screws (usually four screws).
- Connect the initiators (e.g. level sensor)
- Connect the actuators (for example pumps, valves)
 - Connect the power. Make sure that the supply voltage is correct for example: 230 VAC or 115 VAC or 24 VAC For correct supply voltage, refer to the serial number label of the unit
- Program the device (setting of parameters and conditions).
 - \rightarrow Note the information in the manual

CHAPTER 2 SPECIFICATION AND OVERVIEW

The Limit Analyser is used for the automatic monitoring of hardness in water. We recommend that the user read this chapter before installation of the device for safe operation.

Power-supply	85 264 VAC 47 63 Hz
Power consumption	25 VA (in operation)
Protection class	IP 54
Ambient operating temperature	5°C 45°C
Raw water temperature	5°C 40°C
Humidity	20%RH 90%RH (without ice or condensation)
Feed water pressure	approx. 0.55 bar (12 bar recommended)
Feed water condition	clear, colourless, free of suspended solids, no gas bubbles

2.1 General Specifications

→ Technical data

Installation location	indoor wall mount	
External dimensions	without enclosure:	280 [W] × 250 [L] × 140 [D] mm
	with enclosure:	300 [W] × 300 [L] × 190 [D] mm
Mass	approx. 2.0 kg	

→ Analysis characteristics

colorimetric method	
Limit-Value-Reagents LR:	
0.03 mg/l 0.05 mg/l, 0.1 mg/l, 0.2 mg/l, 0.3 mg/l,	
0.4 mg/l, 0.5 mg/l, 0.6 mg/l	
Limit-Value-Reagents HR:	
0.3 mg/l 0.5 mg/l, 1.0 mg/l, 2.0 mg/l, 3.0 mg/l,	
4.0 mg/l, 5.0 mg/l, 6.0 mg/l	
approx. 0.4 ml / analysis	
2 years	
3 x Relays	
250 VAC / VDC 4 A	
potential free outputs NC/NO	
potential free contacts (load 24 V;10 mA)	
approx. 1000 ml/analysis	
→ Drainage volume may vary depending on feed water pressure	
and flush time	

\rightarrow Water inlet and outlet

Water inlet connection	For connecting 6 mm outer diameter pipe
Water outlet connection	For connecting 6 mm outer diameter pipe
→ atmospheric pressure / open funnel	→ Inlet and outlet pipes are not attached to the device. Please use specified pipes. Using tubes other than those specified may cause leakage. → Please contact our distributors.

Order numbers for unit and reagent

Limit Analyser

SYCON 2501 Fe	30-010321
Standard enclosure	33-099005

Reagents

the limit.

analysis takes place!

Fe-LRS	0.03 – 0.6 mg Fe/l	32-080320
Fe-HRS	0.3 – 6.0 mg Fe/l	32-080330

The system works with one-component reagents with different limit values. Shelf-life of the reagents is 2 years if properly stored (not opened; cool; dark). After opening, bottles should be used within twelve months.

Sample waters with temperatures over 45°C must be cooled down before

NOTE

If the programme switch S9 is set to 'ON', the analysis evaluation will be reversed. That means there will be an error warning when the test result is <u>below</u>

NOTE

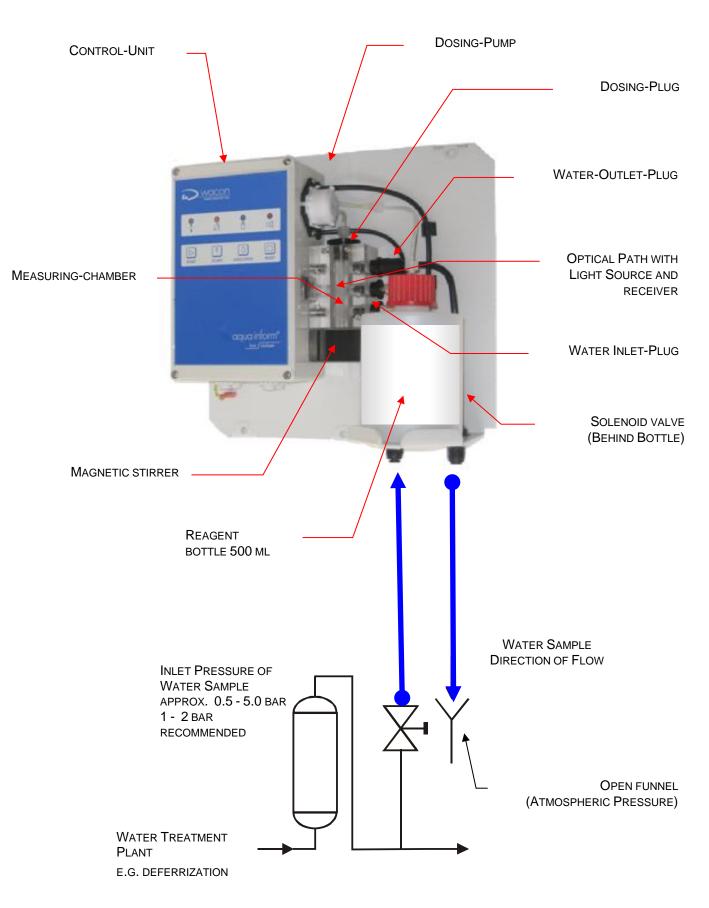
 \rightarrow Accessories

 \rightarrow Sample cooler

SYCON CLEAN order nº. 30-010 900

Cleaning set for acryl glass measuring-chambers

- → 1000 ml cleaning solution FIT 3000
- \rightarrow 5 pairs of gloves
- → 2 brushes, funnel, container
- \rightarrow manual


FIT 3000 order nº. 32-089 100

Cleaning solution for acryl glass measuring-chambers \rightarrow 1000 ml cleaning solution FIT 3000

PC 200	order nº.	30-015 100
PC 400	order nº.	32-015 200

For details please refer to our home page www.rls-wacon.de

FIG. 2.1 2.2 Overview – limit analyser – configuration

FIG. 2.2 2.3 LIMIT ANALYSER – DISPLAY AND OPERATING PANEL

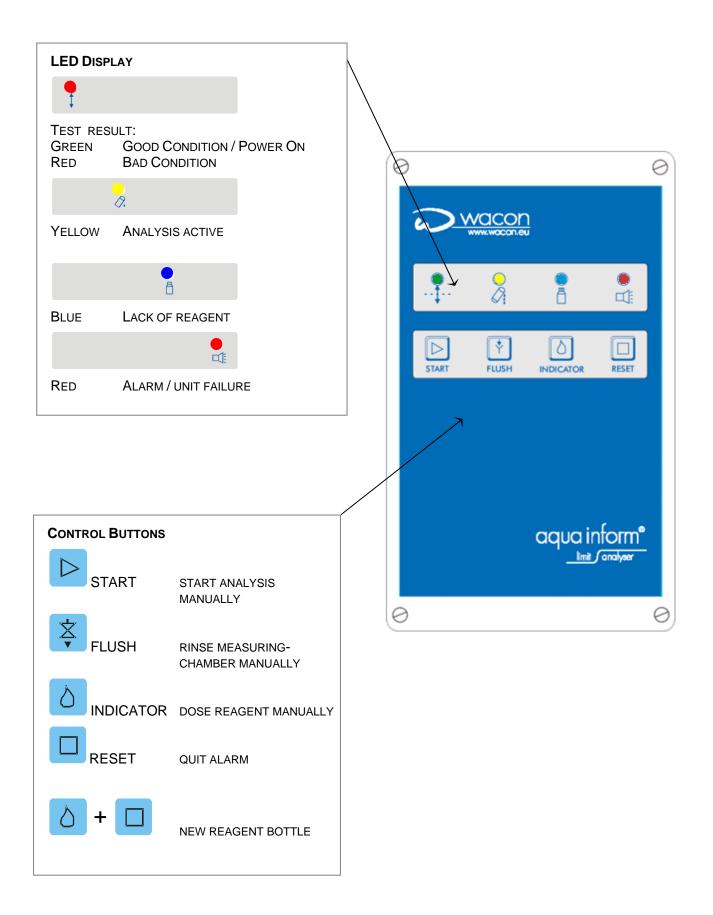
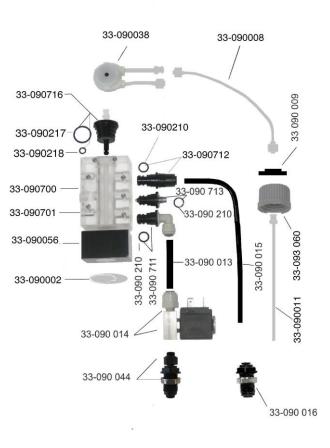
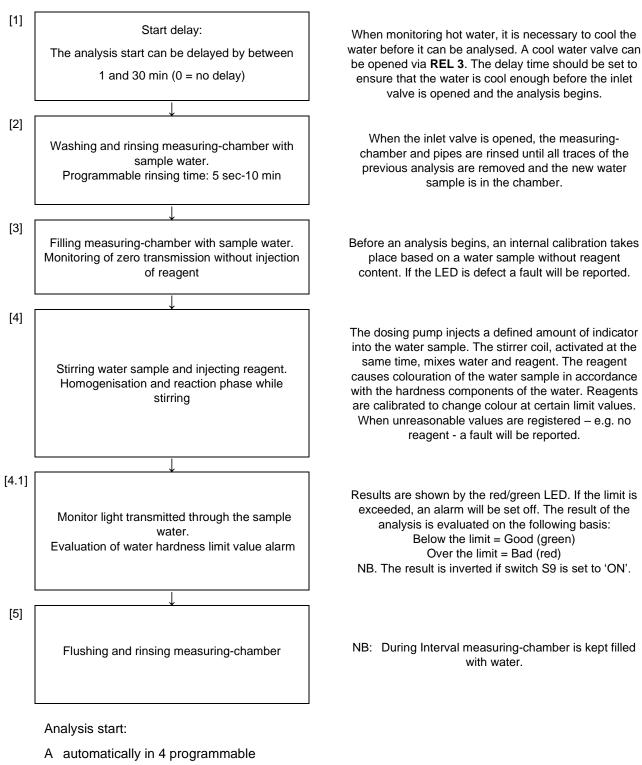



FIG 2.3

2.4 SPARE PARTS LIST

Order №.	Description
33-090 002	Magnetic stirrer
33-090 008	Bottle Adapter
33-090 009	Bottle adapter
33-090 011	Suction lance
33-090 013	Inlet connection 1/4"
33-090 014	Solenoid valve 24V complete
33-090 015	Outlet connection 6mm
33-090 016	Bulkhead fitting 6mm
33-090 038	Cartridge of peristaltic pump
33-090 044	Bulkhead fitting 6mm with threaded connector
33-090 056	Activator for magnetic stirrer
33-090 210	O-Ring 9 x 1,5
33-090 217	O-Ring 17x2
33-090 218	O-Ring 3,2 x 2,5
33-090 700	Measuring-chamber complete 33-090002, 33-090701, 33-090711, 33-090712, 33-090713, 33-090716
33-090 701	Measuring-chamber
33-090 711	Inlet plug ¼"
33-090 712	Outlet plug ¼"
33-090 713	Actuator (LED)
33-090 716	Dosing plug
33-093 060	Bottle cap


33-090 023	Power supply circuit board 85-264 V	
33-090 024	Main board complete	
33-090 025	Control unit complete 85-264 Volt	
33-090 026	Peristaltic pump complete	
33-099 007 Housing for control unit with lid		
33-099 700 Operating manual German		
33-099 701	33-099 701 Operating manual English	

33-090 028	MAINTENANCE – KIT
1x 33-090 038	Cartridge of peristaltic pump
1x 33-090 008	Bottle connector
1x 33-090 011	Suction lance
1x 33-090 217	O-ring 17 x 2
3x 33-090 210	O-ring 9x1,5
1x 33-090 218	Dosing-O-ring 3,2 x 2,5

2.5

Operation principle of Sycon 2501

An analysis cycle consists of 5 steps

- intervals: (0)15 / 30 / 60 / 120 minutes
- B manually by pushing the Start-button
- C via an external switch if the programmable switch S10 is 'ON'

Attention! If the interval (0)15 is programmed, analysis runs can only be triggered through an external switch (interval 0 minutes). By means of a flow monitor or a timer, the analyses can be suppressed during periods when the water conditioning system is switched off or in regeneration, or no samples are being taken. In this case the programmable switch S10 must be in 'OFF' position.

2.6 Functions

The SYCON 2501 Fe system has the following features:

- [1] Automatic detection of iron leakage in accordance with limit value reagent used. The monitoring process is fully automated, saving a significant amount of work by eliminating the need for complicated manual procedures.
- [2] Requires no periodic calibration.
- [3] The interval between each analysis can be set to 15; 30; 60 or 120 minutes. The start of analysis can be triggered by an external switch
- [4] Reliable detection of iron leakages by means of limit value reagents.
- [5] Monitoring of limit values with higher accuracy When a BAD condition is detected, a reference analysis may be made after 4 minutes.
- [6] LED status display is independent of language.
- [7] Alarm functions: When a hardness leakage is detected, an alarm is issued by switching the potential free relay – REL 1. This alarm output may be used, for example, to send a signal to a control panel, to sound a buzzer, to close a valve or to control a programme for the regeneration of a water softening plant.
- [8] Diagnostic programme: If a fault occurs in the system an alarm is issued by switching the potential free relay - REL 2. Technicians may run step by step through the diagnostic program to check functions and find faulty parts in the device (→ page 48).
- [9] Requires minimal maintenance: Depending on measurement intervals and frequency of analyses respectively the measuring-chamber has to be cleaned and reagent pipes and o-rings changed once or twice a year (→ page 42).
- [10] Minimal reagent consumption: The reagent bottle is easily replaced. The 500 ml bottle does not need to be replaced for approximately three or four months in typical applications. (Note that more frequent replacement may be necessary, depending on the application.)
- [11] Compact in design, easy to install: The main unit is installed easily on a wall. Installation is a simple process (\rightarrow page 19).
- [12] Digital input 'IN':

The potential free switch of a flow monitor, a timer or any other condition switch can be connected to this input. (\rightarrow page 26). When the contacts are open, no analysis will be carried out during the programmed interval. As an alternative, this input can be used as a start input.

Three potential free Relay Outputs - REL 1 / REL 2 / REL 3

The potential free relay outputs can be used to transmit a limit alarm (REL 1), a unit failure (REL 2) or an active analysis (REL 3) to a control panel for example (\rightarrow page 25). Alternatively, signalling units or valves may be activated.

[13] 'BOB'- operation

The abbreviation BOB comes from the German <u>B</u>etrieb <u>ohne B</u>eobachtung (operation without permanent supervision) and follows a regulation of German TÜV (technical inspection authority) especially for boiler houses, which requires reliability of instruments for at least 72 hours.

The REL 2 output may be used to transmit a warning to a remote location when the reagent needs to be replaced.

Analytical devices of type SYCON 2501 were specially designed for BOBoperation (operation without permanent supervision). Boiler houses, running in BOB-operation, require a qualitative monitoring of water hardness in the boiler feed water according to the technical guideline TRD 604 (<u>Technische Regeln für Dampfkessel</u> published by German TÜV).

Analytical devices of type SYCON 2501 record the consumption of reagent in order to ensure that in periods of operation without supervision, a sufficient amount of reagent for reliable analysis is available in the bottle. The sufficient amount of reagent should be calculated independently of set analysis intervals for the next 72-hour operation.

If the very next 72-hour BOB-operation cannot be reliably guaranteed, an alarm "lack of reagent" is issued via relay REL 2.

The reagent stocks can only be calculated correctly if the internal counter is reset after installing a new 500 ml reagent bottle by pressing the RESET key combination.

NEW REAGENT BOTTLE

The device does not recognize the contents of the bottle, but resets the counter of the metering pump, which then counts back starting from 500 ml. You can reset the counter to zero only. If the keys are pressed during an analysis without a new, full bottle of reagent being installed, the reagent quantity will not be properly calculated, and the alarm will not be issued on time or at the wrong time. This also applies if the RESET action is forgotten.

Attention! If no iron is present in the water, no colour change will appear. If no reagent is dosed, even for water with iron content no colour change will appear and the reading will wrongly indicate no iron content.

CHAPTER 3

INSTALLATION AND COMMISSIONING OF LIMIT ANALYSER

Installation Requirements 3.1

The analyser shall be used only to determine a parameter in the sample water.

Proper operation can only be guaranteed if reagents approved by the manufacturer are used (\rightarrow page 12 or 27).

Changes to the electrical connections and the programming should only be carried out by a qualified person.

The plant must meet the following conditions:

- The maximum allowable load capacity of the switching outputs and the overall performance of the system must not be exceeded by the connected load (note phase angle for inductive loads).
- All inductive loads (valves, motors, contactors, transformers) of the plant must be equipped with suitable suppressors (e.g. RC element, varistor, diode, etc.)
- If the analyser could be influenced by external devices with high electromagnetic interference levels, these effects should be reduced by appropriate measures. On the supply voltage input of the offending equipment appropriate external interference suppression (line filter) should be fitted.

3.2 Instruction for Installation

When making connections to printed circuit boards, the following guidelines must be followed:

• Do not apply excessive force to the terminals. Only apply the force necessary to open the terminal (or to release the cable when disconnecting).

Push terminals are capable to receive single-strand conductors up to 1.5 mm². However, multi-stranded conductors without cable shoes should not exceed 1.0 mm² and with cable shoes only 0.75 mm². According to the manufacturer, use of cable shoes is not required.

To loosen a clamp, a small slot screwdriver, with a maximum blade width of 3mm is to be used.

- Observe all applicable electrical regulations.
- Work on electrical equipment of the plant / machinery must be performed by a qualified electrician!

NOTE

3.3 Installation in 4 steps

The analyser can be mounted with or without protective enclosure. The manufacturer offers a standard enclosure. The mounting and dimensions are described in this guide:

Custom-built or tailor made enclosures for the devices of the series Limit Analyser /SYCON 2501 / SYCON 2800 as well as devices with custom names and labels that are technically based on these ranges are not described in detail in this manual.

step I a mounting without enclosure

Use 4 screws (max. 6 mm) to mount the unit on a wall or suitable support structure. For spacing of holes see (**Fig. 3.3** \rightarrow page 24)

Or **b** step I b mounting with enclosure

Use the 4 brackets included to mount the unit (**Fig. 3.4** \rightarrow page 24). The tabs can be rotated by 45 degrees or 90 degrees outside. Alternatively, the unit can be mounted without the brackets from the rear on a plate (M6). For spacing of holes see page 24

In both variants, avoid direct sunlight and strong artificial light sources

- \rightarrow disturbance of the optical path in the measuring chamber
- \rightarrow electromagnetic interferences by artificial light source

Do not install under dripping pipes.

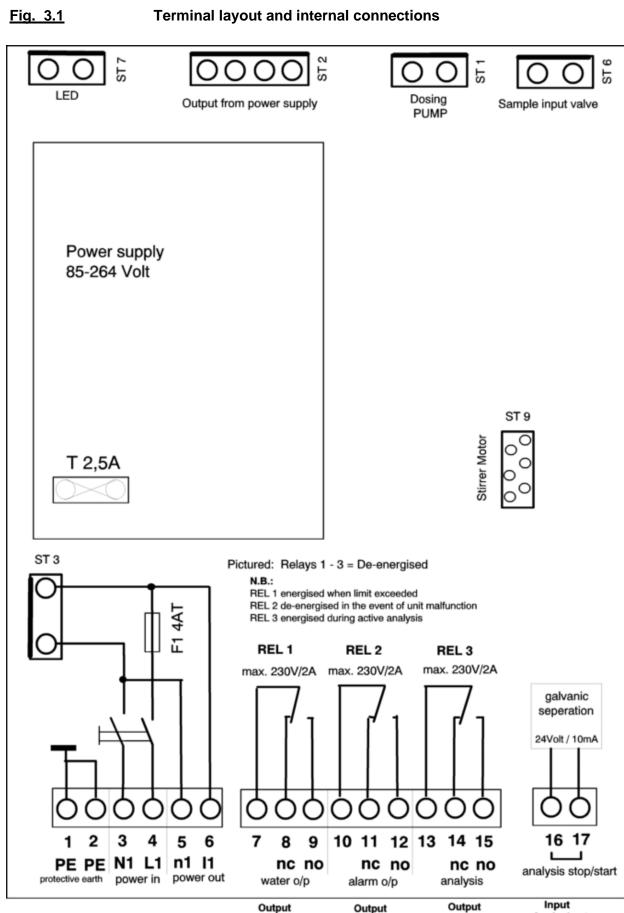
step II establish sample and drain pipe line

Use flexible pipe 6x4. Between water treatment plant and analyser a manual shutoff valve and particle filter (if necessary) should be installed. Drainage should be fed via short connection into an open funnel \rightarrow run off to atmospheric pressure.

Make sure that you connect the inlet and outlet properly \rightarrow (**Figure 2.1** in page 13)

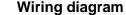
►

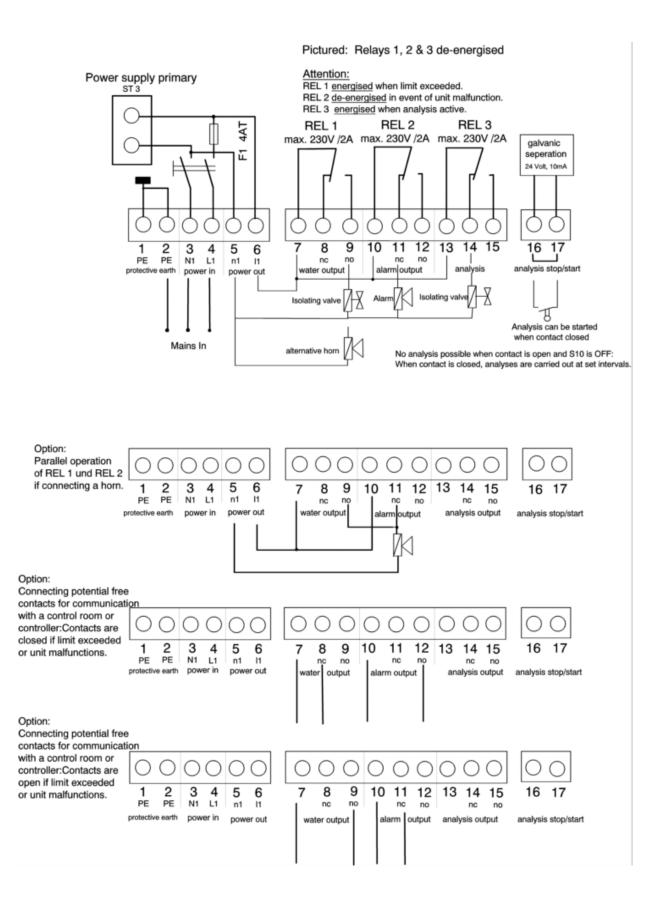
step III electrical connections


Refer to information in figure 3.1 (terminal connection (\rightarrow page 21) and figure 3.2 (connection instructions (\rightarrow page 22).

Work on electrical equipment of the plant / machinery must be performed by a qualified electrician! Observe all applicable electrical installation rules

 \rightarrow applicable supply voltage 85 - 264 VAC, 47 - 63 Hz




Unit malfunction

Analysis results

Analysis active Analysis stop Flow-monitor

CHAPTER 3 INSTALLATION AND COMMISSIONING

Step IV install a new, full reagent bottle

Open the reagent bottle and insert the suction lance into the bottle. Secure the cap by hand. Avoid cross threading (refer also \rightarrow page 45 "changing reagent bottle").

NOTE

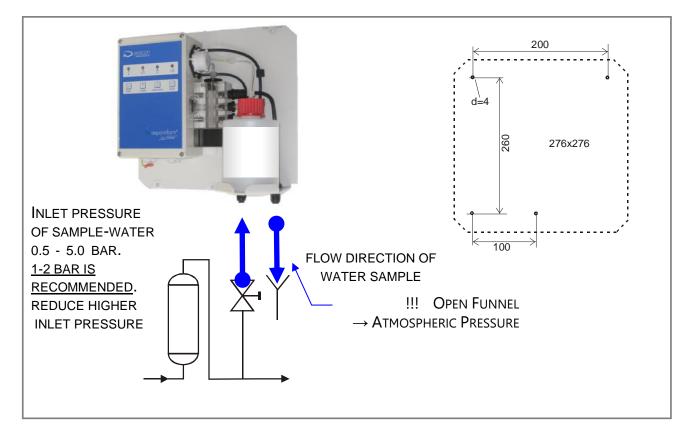
The reagent bottle is not automatically included with the device. For available reagents and corresponding order numbers refer to chapter 3

- \rightarrow page 12
- \rightarrow only use original reagents of type Fe-LRS or Fe-HRS in round 500 ml bottle

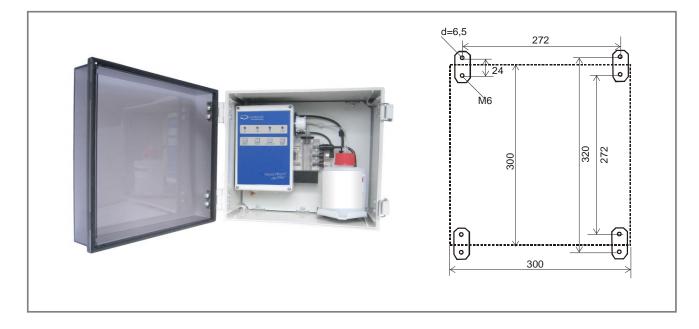
risk of pollution

When handling the reagent, take care that your eyes, your skin and your clothes do not come into contact with the liquid.

 \rightarrow Follow the instructions in the safety data sheets


Safety data sheets on common types of reagents are available for download on our website www.rls-wacon.de

We accept no liability for permanent stains by the dyes in the reagents or personal damage caused by improper handling of the reagents.


We recommend wearing appropriate protective clothing when working with the reagents:

- work wear \rightarrow
- laboratory gloves \rightarrow
- eye protection / goggles \rightarrow

Fig. 3.3 Wall mounting without enclosure

Fig. 3.4 wall mounting with standard enclosure

3.4 Connection of relay outputs

	Exceeded limit \rightarrow relay REL1terminals 7 / 8 / 9Signal devices and valves can be switched on when the limit is exceeded. The relay switches as permanent contact or impulse contact to trigger a control system for the regeneration of a water treatment plant.				
	Using the program switches S4 and S5 (\rightarrow page 33) to set different functions for the relay REL1.				
1. Impulse contact	\rightarrow 3 seconds				
2. Impulse contact	\rightarrow 60 seconds				
3. Permanent contact					
	→ Alarm auto-quit. -the left red LED flashes until reset-button is pressed.				
	\rightarrow Further analyses will be carried out during the selected interval.				
4. Permanent contact	$a \rightarrow $ with analysis stop				
	→ The alarm is active and must be quit manually the left red LED flashes until reset-button is pressed				
	→ No further analyses will be carried out at the selected intervals until the alarm is reset.				
	Malfunction \rightarrow relay REL2terminal 10 / 11 / 12Relay REL2 signals malfunctions. It is normally closed in case of no malfunction.				
	The following faults are signalled:				
Power failure	\rightarrow unit is switched off (relay drops)				
Lack of reagent	→ content of reagent bottle is lower than app. 10% refer to page 18: BOB-operation				
Zero transmission error	 r → insufficient brightness before the addition of reagent • pollution of measuring chamber 				
	 pollution of measuring chamber pollution of water sample or turbidity effects malfunction of electronic 				
Measurement error	 → insufficient difference of measured value before and after addition of reagent no reagent was dosed no water in measuring chamber no homogenisation (magnetic stirrer misses or agitator failure) 				
	Analysis process \rightarrow relay REL 3terminals 13 / 14 / 15Signal devices and valves can be connected. The relay switches during the analysis.				
	The taking of a sample can be delayed by means of the rotary switch 'Delay time'. It can thereby be ensured that, if a sample cooler is installed, the sample has time to cool before it is introduced to the measuring-chamber.				

3.5 Connection of remote signals

	Digital input	\rightarrow 'IN'	terminals 16 / 17		
	hardness leakage. An attemp	softener is in regeneration ma of to test with the water feed clo nt water into the feed pipes or a ed.	sed would return either		
	The limit analyser provides alternatively, to avoid false a	s the following two methods, larms:	which may be used		
Method 1	Utilizing the remote input-sig	nal feature			
	Connecting an external potential free contact (e.g. flow control switch or level control switch) will allow an analysis only while the water softener is turned on and water flows, or will suspend analysis while the water softener is in regeneration.				
	The purpose of remote signation is regenerating or the feed w	als is to prevent an analysis w ater is stopped.	hile the water softener		
Method 2		time may be set by an externa ed to this remote-signal input to			
	Alternative contact input	\rightarrow 'IN'	terminals 16 / 17		
i		et to 'ON', this input serves as ammed start intervals, an anal	-		
NOTE	NB. If switches S1 und S2 ar be started vie this input or ma	e both 'OFF' (5 Min. Interval), anually.	an analysis can only		

It is recommended to connect a remote signal wherever possible to prevent false readings and avoid unnecessary false alarms.

Especially when there is a direct connection to a water treatment plant should false readings be avoided.

Connect only potential free contacts to terminals 16 + 17

Function of terminals 13+14 can be checked in diagnostic menu step 13 If terminals 16 + 17 are not used, they must be bridged and S9 set to 'OFF'

CHAPTER 4 OPERATION AND USE

4.1 Summary of limit analysers of Sycon 2501 series

Analysers of Sycon 2501 series, type Fe are designed to monitor the limits set for the iron content in water through the use of colorimetric analysis.

The one reagents specifically designed for this instrument react with the iron present in the water. Depending on the iron concentration a different colour of the water will appear. The instrument then analyses the translucence of the resultant colouration for light of a specific wavelength.

The time consuming and inaccurate measurement by hand is no longer necessary and measurement can take place 24 hrs a day.

Because of the simple LED display, the device can be used in all language areas.

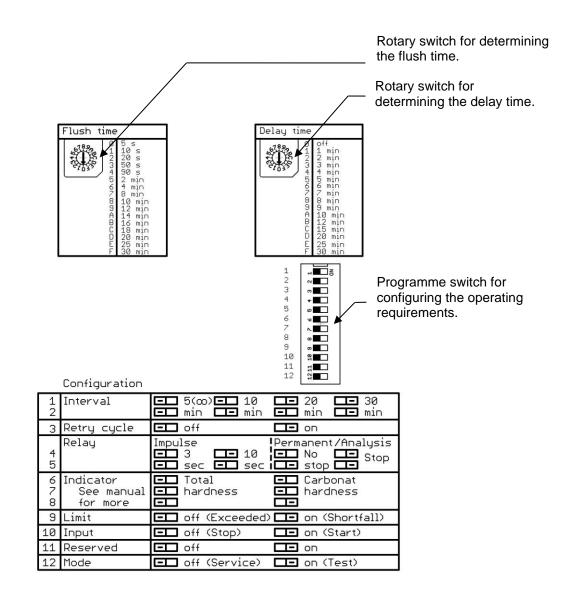
For the monitoring of limits different reagents were developed. For the analytical instrument Sycon 2501 Fe the following limit reagents are offered:

Limit Analyser

SYCON 2501 Fe	30-010321
Standard enclosure	33-099005

Reagents

Fe-LRS	0.03 – 0.6 mg Fe/l	32-080320
Fe-HRS	0.3 – 6.0 mg Fe/l	32-080330



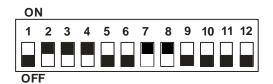
4.2 Before initial operation

- → Make sure that the steps from chapter 3 (→ page 19) have been performed properly.
 - → Make sure that the unit is securely mounted to a wall or suitable surface.
 - → If in doubt, consult a specialist or contact your supplier or distributor
- → Make sure electrical connections are correct
- \rightarrow Make sure that the hydraulic connections are correctly installed
 - \rightarrow Check in particular whether water supply and drainage are installed in the correct arrangement (\rightarrow Fig. 2.1 page 13)
 - \rightarrow Make sure that the maximum allowable operating pressure is not exceeded on the water supply line (\rightarrow chapter 2 see table on page 11)
 - $\rightarrow~$ Install, where necessary, a pressure reduction valve
 - \rightarrow Make sure that water quality meets the specified requirements (\rightarrow chapter 2 see table on page 11)
 - → Take any appropriate measures to improve the feed water quality (e.g. installation of a filter)
- → Make sure that the bottle has sufficient reagent
 - $\rightarrow\,$ Check the seal of the bottle for leaks and that the top is firmly screwed on the bottle.
 - \rightarrow Verify that the correct type of reagent is used for the application.
 - \rightarrow Verify that the reagent has not expired.
- → Make sure that all plugs are firmly in the measuring chamber, in the correct place and that they are properly secured with securing pins (\rightarrow see **Fig 2.3** \rightarrow page 15).
- → Make sure that all water and reagent pipe connections in the system are connected correctly and firmly (→ see Fig 2.3 in page 15).
- → Make sure that the monitored water treatment plant is in operation and sample water is supplied.
- → Make sure that the input and output contacts of the analyser are correctly connected to the water treatment plant to be monitored (→ see Fig 2.1 in page 13).
 - \rightarrow If in doubt, consult a specialist or contact your supplier or distributor

4.3 Programme Switches

The Limit Analyser has 3 programme switches:

4.4 Setting the programme switches


The operating requirements of the Limit Analyser are programmed using the small DIP switches S1 – S12.

Switch off the unit and open the lid of the controller

- \rightarrow WARNING supply voltage 85 -264 VAC 47 63 Hz
 - → The DIP-switches (dual in-line package) are located on the reverse side of the display board. The display board is screwed to the unit lid and should not be removed.

Also located on this board are the 2 16 position rotary switches for setting the flush time and the delay times.

Factory settings

Flush time	4 minutes	Position 6	4 min.	
Delay time	Off	Position 0	0 min.	
Analysis interval	30 minutes	S1 OFF	S2 ON	
First result suppression	Yes	S3 ON		
Function Relay 1	Contact closed = continuous analysis	S4 ON	S5 OFF	
Limit value iron content	0.2 mg/l	S6 OFF	S7 ON	S8 ON
Monitoring	Signal when limit exceeded	S9 OFF		
Indicator type	Fe-LRS 0.03-0.6 mg/l	S11 OFF		
operating mode	Analysis	S12 OFF		

DIP SCHALTER

Work on electrical equipment of the plant / machinery must be performed by a qualified electrician! Observe all applicable electrical regulations.

 \rightarrow WARNING supply voltage 85 – 264 VAC 47 – 63 Hz

For the operation of the rotary switches and for setting the slide switch you need a small insulated screwdriver

→ Please use only good quality tools, this will help avoid damage to sensitive components

flush time

The pre-analysis flush time is programmed using the left hand rotary switch "Flush time". The range is from 5 seconds to 30 minutes.

Pos	time	Pos	time	Pos	time	Pos	time
0	5 s	4	90 s	8	10 m	С	18 m
1	10 s	5	2 m	9	12 m	D	20 m
2	20 s	6	4 m	А	14 m	E	25 m
3	50 s	7	8 m	в	16 m	F	30 m

Calculate the flush time according to the length of the water supply pipe in order to ensure an analysis of a fresh sample.

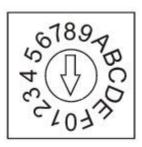
 \rightarrow For example:

a 5 meter long pipe (6 x 4) with an inner diameter of 4 mm has a volume of approximately 63 ml and, depending on the pressure, will be flushed in approximately 4 seconds.

rules of thumb:

- → one meter of a pipe with inner Ø 4mm contains approx. 13 ml water
- → doubling the diameter results in a fourfold volume (Ø 8 mm ca. 50 ml/m)
- → The rate of flow is influenced by the internal diameter of the inlet valve and the water pressure.

The operating conditions will vary according to the location of the plant. They are affected by the size of the supply pipes and the pressure reductions due to heavy demand from other users, etc.


Measure the amount of flushed water at the current settings and then compare this with the theoretical amount that you have calculated. Set the flush time accordingly to ensure that a fresh sample is taken.

We recommend a minimum flush time of 20 seconds.

delay time

The time delay prior to taking a sample is programmed using the right hand rotary switch "delay time". The range is from 0 seconds to 30 minutes.

Pos	time	Pos	time	Pos	time	Pos	time
0	0 m	4	4 m	8	8 m	с	18 m
1	1 m	5	5 m	9	9 m	D	20 m
2	2 m	6	6 m	А	10 m	E	25 m
3	3 m	7	7 m	в	12 m	F	30 m

NOTE

Choose the delay time to ensure that no hot water is introduced into the measuring-chamber.

→ When monitoring condensate, it is necessary to cool the sample to below 40°C. If there is a long time interval between analyses, it makes no sense to keep the condensate permanently cool. A cool water valve can be opened when a sample is required. Only when the sample temperature is under 40°C should the inlet valve to the analyser be opened.

NOTE

→ The delay time must be calculated on site since it will depend on the water temperatures, the water pressure and the flow conditions of the system. Always begin with a higher delay time and adjust accordingly.

analysis interval

There are four fixed interval times selectable by varying the positions of switches S1 and S2.

The choice of analysis interval determines the frequency at which analyses are carried out. The interval time is the time interval between two measurements.

 \rightarrow When input 'IN' is open circuit, analysis start is disabled. The unit is delivered with terminals 16 / 17 bridged. Ensure that this bridge is in place or, alternatively, connect an external switch (e.g. flow monitor).

 \rightarrow Input 'IN' can be switched over from flow-monitor function to start function by means of S10 (S10 = ON). Only the intervals 30, 60 und 120 minutes apply to the start function. If S1 and S2 are OFF, auto-start is disabled.

NB! The external start is disabled when input 'IN' is bridged.

An			
S1	S2	time	
OFF	OFF	5(∞)* min.	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
OFF	ON	30 min.	ON 1 2 3 4 5 6 7 8 9 10 11 12 0FF
ON	OFF	60 min.	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
ON	ON	120 min.	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF

 $(\infty)^*$ When the programme switches S1 und S2 are OFF, and S10 is ON, the interval function is deactivated.

analysis repetition

It can be determined whether a second analysis should be carried out to verify the result of a failed test by utilising the retry function. (first result suppression). Only when two consecutive analyses indicate bad water conditions, will the relay REL1 be activated.

This second analysis is carried out independently of the set interval approx. 4 minutes later. If a flow monitor is connected to terminals 16 / 17 (IN) the 2^{nd} analysis will be carried out even when no flow has been detected.

Г

First result		
S3	Function	
OFF	No first result suppression	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
ON	First result suppressed	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF

Relay function REL 1

Relay REL 1 signals that the limit has been exceeded. You can choose between an impulse contact (3 und 60 seconds) and a permanent contact.

Possibilities for permanent contacts:

- 1. Further analyses will be carried out and if the sample is below the limit, REL 1 will be deactivated automatically.
- 2. If the limit is exceeded, no further analyses will be carried out and REL 1 must be deactivated manually (RESET). Only then can more analyses be carried out.

Function r	elay REL 1		
S4	S5	Function	
OFF	OFF	impulse contact 3 seconds	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
OFF	ON	impulse contact 60 seconds	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
ON	OFF	permanent contact no analysis stop	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
ON	ON	permanent contact analysis stop	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF

measurement parameter

The analyser can be used to monitor the iron content for two different reagents:

 \rightarrow type LRS, range 0-0.6 mg/l

→ type HRS, range 0-6.0 mg/l

For each reagent 8 limit values can be set through the switches S6 - S8 (see table below and the diagrams on the following page).

	Limit Values in mg Fe/l						
S6	S7						
OFF	OFF	OFF	0.03	0.3	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
OFF	OFF	ON	0.05	0.5	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
OFF	ON	OFF	0.1	1.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
OFF	ON	ON	0.2	2.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
ON	OFF	OFF	0.3	3.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
ON	OFF	ON	0.4	4.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
ON	ON	OFF	0.5	5.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		
ON	ON	ON	0.6	6.0	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF		

limit monitoring ►

Normally a signal is given if the designated limit is exceeded. In which case, for example, a deferrization process can be monitored for iron leakage.

- \rightarrow If S9 is in the OFF position, a signal is given if the iron content of the sample is above the designated limit.
- \rightarrow If S9 is in the ON position, a signal is given if the iron content of the sample is below the designated limit. This feature is useful in a water grading plant when a minimum iron content is required.
- \rightarrow When S9 is ON all the functions described in this manual apply except that the function of the limit is inverted

]	
S9	Function	
OFF	Signal when above limit	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF
ON	Signal when below limit	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF

The input 'IN' can be assigned to two different functions:

flow monitoring function: This function is used if an analysis is to be started when a water sample is taken. It is particularly useful for plants that require sporadic tests (e.g. when filling storage containers at long time intervals).

This function is also used when an analysis is not required (e.g. during the regeneration of a filtration plant).

- \rightarrow NB. Contacts to terminals 16 / 17 must always be potential free.
- \rightarrow Any other contact source can be used with these terminals.
- \rightarrow The unit is delivered with terminals 16 / 17 bridged. The flow monitor function is therefore disabled.

NOTE

start function

With this setting, you configure the operating mode of the input contact.

Application 1: Analyses are to be carried out continually at pre-set time intervals.

In this case, the switch S10 is OFF (works setting). The IN terminals 16 &17 should be bridged.

Application 2: Analyses will be carried out at fixed time intervals if a flowmonitor registers flowing water.

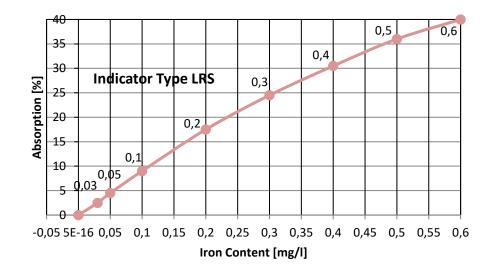
The switch S10 is in the OFF position. The flow-monitor is connected to terminals 16 & 17 in place of the bridge. The first analysis takes place 3 minutes after switching on the unit even when the flow-monitor has not detected any water flow. Thereafter, the analyses are carried out at the pre-set intervals only when the flow-monitor registers water flow.

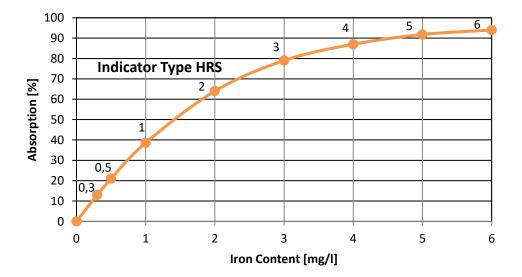
Application 3: The analysis is started by an external controller.

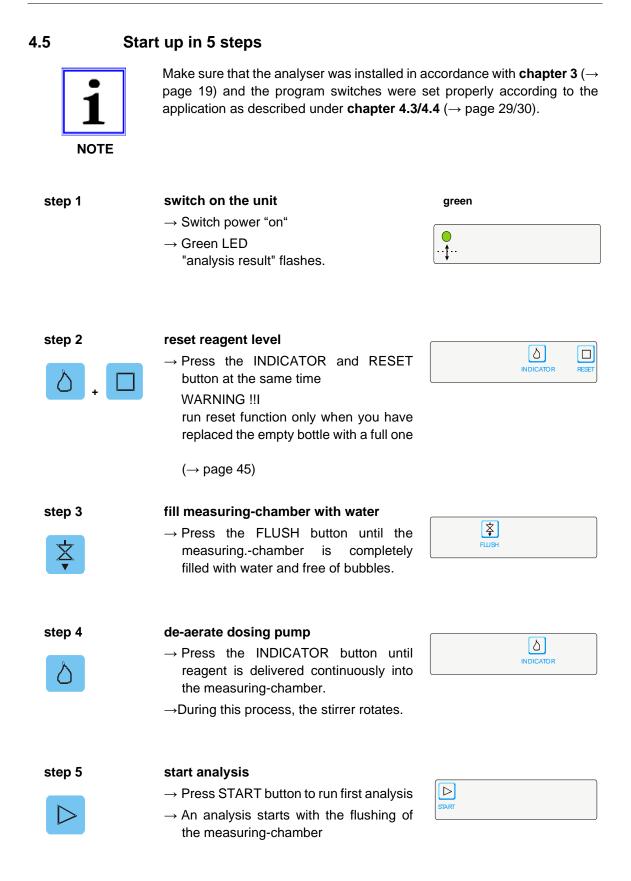
In order to control the analysis intervals from a controller, the controller must be connected to terminals 16 & 17. The switch S10 must be set to ON in order to deactivate the unit's internal intervals. If the switches S1 & S2 are set to OFF, no interval controlled analyses will take place. Otherwise, the intervals 10, 20, and 30 minutes for the settings of both switches apply.

I	nput function 'IN'
S10	Function
OFF	Flow monitor No analysis when contact open
ON	Start function Analysis start when contact closed

Selection of Indicators


You can choose between two indicators:


Type LRS, range 0 – 0.6 mg Fe/l


Type HRS, range 0 - 6 mg Fe/I

 \rightarrow see the following diagrams with the displayed programmable limit values (switches S6, S7 und S8).

Selection of Indicators		
S11	Function	ON
off	Indicator LRS	1 2 3 5 7 8 9 10 11 12 0 1 1 1 1 1 12 1 1 12 1 1 12 1 1 12 1 1 12 1
on	Indicator HRS	

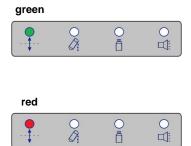
4.6 Operation of the unit \rightarrow automatic operation

Make sure that the analyser was installed in accordance with **chapter 3** (\rightarrow page 19) and the program switches were set properly according to the application described under **chapter 4.3/4.4** (\rightarrow page 29/30).

 \rightarrow the unit must be switched on

analysis result

This LED has different colours and signals the analysis result.


- 1. green-flashing:
 - the unit is switched on (green-flashing does not indicate an analysis result)
- green: the water quality is below the specified limit
- 3. red:

the limit has been exceeded - the relay REL 1 is not yet activated

 \rightarrow repeat analysis (first result suppression)

4. red-flashing:

the limit has been exceeded – and the relay REL 1 is activated

analysis active 1. yellow:

the LED lights continuously, thus indicating that an analysis is in progress.

2a. yellow-flashing:

the LED will flash, signalling that the analysis interval has expired - next analysis start is delayed because input contact IN is opened (flow –monitor function)

2b yellow-flashing + (red):

the LED will flash, signalling that no analysis can be started automatically. The device was programmed so that after a limit is exceeded, the analysis stops. The red "analysis result" LED flashes or lights simultaneously (see program switch S4 and S5 on page 34

2c Rapidly flashing yellow:

the LED flashes rapidly, signalling that the analysis start is delayed (e.g.in conjunction with a sample cooler).

See setting the delay time on page 31.

Reagent shortage	1. blue: the LED lights continuousl indicating that the reagent below 30%	· · · T · · · / 2	blue O C
	 blue-flashing: the LED flashes, signalling reagent level is below 10%. same time, the fault relay R activated. 'BOB-function' → page 18 	At the	
alarm message limit exceeded	 1a. red-flashing + red-flashing Red "Analysis result" LED + red "alarm" LED flashing: The "alarm" LED flashes and that the limit has been exce conjunction with the LED " results". The relay REL 1 "limit excee energised. 1b. red-flashing + red Red "Analysis result" (LED 	signals reded in analysis reded" is	red
	 + red alarm" LED': The "alarm" LED is on and sign the limit has been exceet conjunction with the LED " results". → The relay REL 1 "limit ex was de-energised by a res 	eded in analysis ceeded"	
alarm message: reagent shortage	 2a. blue-flashing + red-flushing Blue "indicator" LED + red "alarm" LED flashing: The red LED flashes and sign of reagent" in conjunction of flashing blue LED <10% → the fault relay is energised. 	with the	blue red
	 2b. blue-flashing + red Blue "indicator" LED + red "alarm" LED The red LED lights permane signals reagent level is < conjunction with the flashin LED. → the fault relay is de-energing 	10% in ng blue	blue red

alarm message: malfunction of unit 3a. **red-flashing**

Red "alarm" LED flashing: the LED signals a malfunction of the unit

- \rightarrow incorrect zero transmission
- or \rightarrow incorrect measurement
- all other displays are off
- \rightarrow the fault relay is energised

3b. **red**

Red "alarm " LED: the LED signals a malfunction of the unit

- \rightarrow incorrect zero transmission
- or
- \rightarrow incorrect measurement
- all other displays are off
- \rightarrow the fault relay is de-energised.

4.7 Operation of the unit \rightarrow manual operation

1 NOTE	Make sure that the analyser was installed in accord (\rightarrow page 19) and the program switches were set the application described under chapter 4.3/4.4 (\rightarrow the unit must be switched on	t prope	erly ac	cordin	
START	start analysis				
	→ By pressing the START button you can start an analysis at any stage	START			
	 → If an analysis procedure was started already, you may jump to the next program step by pressing the START button. → If an analysis is started manually and REL1 and REL 2 are activated, the relays will be de-activated. 				
FLUSH	rinsing and filling of measuring-chamber		*		
	→ By pressing the FLUSH button you can flush the measuring-chamber and the feed line to the measuring-chamber without an analysis process.		FLUSH		
INDICATOR	de-aerate dosing-pump			۵	
6	 → By pressing the button INDICATOR you can turn on the peristaltic pump at any time to add reagent or to de-aerate the dosing system. → During this process, the stirrer rotates 			INDICATOR	
RESET	RESET function				
	 → De-activates relay REL1 if limit exceeded → see analysis result page 37. → De-activates relay REL2 when a malfunction has occurred or there is a lack 				RESET
	of reagent.				
	 → see alarm messages page 39/40. → Interrupts analysis process. → Alarms should be cancelled first. 				
	Reagent level reset			۵	
	 → Pressing "indicator" and "reset" together resets the reagent level monitor to "full". The reset has been carried out when the blue and red LEDs light up simultaneously. 	key co	mbinat nstallec	his funct ion only a new {	if you

instructions.

To ensure long-term functioning of the analyser, it is necessary to clean the measuring-chamber and replace worn parts from time to time depending on the frequency of analyses and general pollution levels. Depending on the load of the appliance, maintenance work should be done at intervals of about 6 months.

Maintenance is easy to perform. We recommend that the maintenance is performed by trained personnel. Always observe the following safety

Ideally, the maintenance work should be carried out in connection with the maintenance of the water treatment plant or during operating pauses.


```
NOTE
```


Prior to the service, it is advisable to switch off the analyser at the main switch.

 \rightarrow it is not necessary to open the control box in order to carry out maintenance

WARNING: In the case the cover of the control box is opened, note that 230 Vac is applied to terminal blocks 1-6 and, depending on the wiring, to the relay output terminals 7-12.

Contact can lead to serious personal injury.

- → Mortal danger
- → Risk of injury
- \rightarrow By improper handling can damage the machine.

NB. During your maintenance work no analysis can be carried out and a hardness leakage may not be detected.

Switch off the water supply before disconnecting the inlet water pipe.

→ Water can damage the electronics.

When handling the reagent, take care that your eyes, skin and clothes do not come in contact with the liquid.

 \rightarrow Follow the instructions in the safety data sheets.

→Wear suitable protective clothing i.e. Work wear; laboratory gloves; eye protection.

►	Maintenance in	3 steps		
	For routine mainte	nance in intervals of 4 to	o 6 months	
Requirements	time:	approximately 30 minut	utes	
	material:	reagent→ page 12 maintenance set no.1 cleaning set paper towels	depending o Art.nº 33-09 Art.nº. 30-0	0 033
	tools:	screw driver cup or small bucket cleaning set		
Before commenci	ing switch unit OFF!			
MAINTENANCE	CHANGE CARTRID	GE OF PERISTALTIC PUMP		
STEP 1	and pipe should	nth, the dosing-pump cartr d be replaced because ears out and the pipe beco	the	5
	1. Press locking	clips together with thumb pull cartridge to the righ		
	2. Disconnect the	e pipes.		
	·			

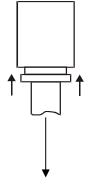
- 3. Remove the reagent inlet plug at the top of the measuring-chamber and replace the blue O-ring.
- 3. Re-insert the plug firmly and secure with the securing pins.

4. Wipe up fluid leaks with a paper towel.

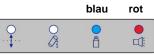
- 5. Replace new peristaltic pump cartridge in reverse order of the above.
- 6. De-aerate pump \rightarrow press button INDICATOR

MAINTENANCE STEP 2 A

 \rightarrow MAINTENANCE 2B (SEE ON PAGE 46)



FLUSH


CLEANING OF MEASURING-CHAMBER: REMOVE, CLEAN AND REINSTALL

- 1. First release pressure from water supply line
- \rightarrow shut off water supply in the treatment plant
- $\rightarrow~$ switch on the unit for a while
- → briefly press the flush button. By opening the inlet valve you release any residual pressure.
- 2. Hold or place the small bucket under the water inlet connection.
- 3. Open the connector. Unplug the 6 mm inlet pipe
 - → Briefly press the flush button. By opening the inlet valve, the measuring-chamber drains almost completely.
 - \rightarrow collect leaking water in the bucket
 - $\rightarrow~$ switch the unit off again.
- 4. Pull the securing pins outwards (do not attempt to remove the pins entirely) and pull the plugs out of the measuring-chamber
 - \rightarrow plugs can be pried <u>gently</u> with a screw driver.
- 5. Remove measurement-chamber from the retaining bolts
 - \rightarrow Empty the measuring-chamber
 - → Insert measuring-chamber in a sufficient quantity of cleaning liquid in the box of the cleaning set for about 10 minutes
 - → Clean the measuring-chamber carefully with the brushes of cleaning set
 - →Rinse the measuring-chamber with clean water.
- 6. Clean the plugs.
- 7. Reassemble the measuring-chamber in the reverse order of disassembly.

MAINTENANCE STEP 3	 REFILL REAGENT AND RESET THE STORAGE COUNTER 1. remove empty reagent bottle → open bottle cap by turning → remove the suction pipe carefully → if reagent fluid leaks, wipe up with a paper towel → dispose of empty bottle 2. replace full reagent bottle
NOTE	 → remove the cap → insert the suction pipe carefully → screw bottle cap firmly shut → pay attention to a correct positioning of the cap and the adapter.
FLUSH	 3. de-aerate the reagent pipe → fill the measuring-chamber with water by pressing the FLUSH button → dose reagent until the pipes and the cartridge of the peristaltic pump are completely filled with reagent and no air bubbles are visible by pressing INDICATOR button
Δ. 🗆	4. confirm bottle change and reset counter \rightarrow press INDICATOR and RESET

4. confirm bottle change and reset counter → press INDICATOR and RESET button simultaneously until the right red and the blue LEDs light up briefly

Step 1 - step 2A - step 2B - step 3

Annual maintenance in intervals of 6-12 month

requirements	time:	approximately 30 minu	tes
	material:	reagent \rightarrow page 27 maintenance set no.2 cleaning set paper towels	depending on limit Art.nº. 33-090 028 Art.nº. 30-010 900
	tools:	screw driver cup or small bucket cleaning set	

Carry out steps 1 & 2 as described on page 42 & 43 then follow the instructions below:

MAINTENANCE STEP 2B	CHANGE PIPES AND O-RINGS
	The maintenance step 2B follows the maintenance step $2A \rightarrow page 43$ Orientate yourself on Figure 2.3 in page 15
1	 → Replace worn parts with the parts supplied with the maintenance kit. → When fitting O-rings, roll the O-rings carefully down to the first groove of the plug. Lubricate well.

Now continue with step 3 (page 45)

:

Replacing components

Please read the notes at the beginning of Chapter 5 \rightarrow page 42. \rightarrow Please read the notes in the data sheets of components

CHANGE OF SOLENOID INLET VALVE

Artikel Nr. 33-090 014

Artikel Nr. 33-090 710

- 1. Release pressure from water supply and empty measuring-chamber \rightarrow page 40
- 2. Remove inlet plug from measuringchamber
- 2. Pull down retaining ring on the bulkhead fitting and remove valve
- 3. Remove 1/4" inlet connector
- 4. Install the new valve in reverse order

REPLACEMENT OF AGITATOR

1. Disconnect power and open the lid of the control box

- 2. Unplug the red connector
- 3. Unscrew the mounting screws
- 4. Install the new agitator in reverse order

REPLACEMENT OF PERISTALTIC PUMP MOTOR Artikelnr. 33-090 026

- 1. Dismantle cartridge of peristaltic pump \rightarrow page 41
- 2. Disconnect power and open the lid of the control box
- 3. Unplug the pump
- 4. Unscrew the mounting screws of peristaltic pump motor
- 5. Remove worn pump motor and install the new pump motor in reverse order.

CHAPTER 6 DIAGNOSTIC FUNCTION

A test programme is installed to check the functions of the unit. It is necessary to open the cover of the control (**chapter 4.3** \rightarrow page 29) and to change the position of DIP-switch combination S12:

test program	mme	
S12	Function	
ON	Test programme	ON 1 2 3 4 5 6 7 8 9 10 11 12 OFF

Note the position of the DIP switches and ensure that they are returned to these settings on completion of the test.

This test programme should only be called up and checked by a competent person. Please observe the following safety instructions!

The test program must be operated with the control unit lid open.

Take great care!

WARNING: 230 VAC is applied to terminal blocks 1-6 and depending on the wiring, to the relay output terminals 7-12.

Contact can lead to serious personal injury.

- → Mortal danger
- → Risk of injury
- → Damage of the equipment.

ELECTRICITY

DANGER

NB. Activating the output relays can cause error signals. Therefore it may be necessary to remove peripheries during this function test.

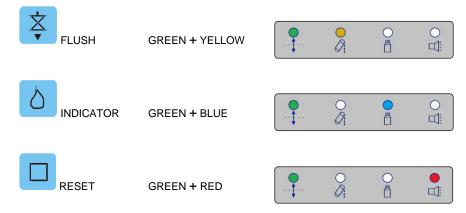
NB. When checking the inlet valve with the water feed connected, water will be fed into the measuring-chamber. Therefore ensure that all water connections are properly fitted or that the water feed is turned off.

 \rightarrow Remember! Water can damage the electronics.

Diagnosis in 15 Steps

PAGE

After turning the switch S12 to the ON position, the test steps described below are called up by pressing the START button


DIAGNOSIS 1		ART button briefly.				
	The LEDs ligh	nt one after the other:				
	1. Green	ANALYSIS GOOD	green	0	0 Å	0
	2. Red	ANALYSIS BAD	red	0	0	0
				yellow		
	3. Yellow	ANALYSIS ACTIVE	‡	O Øi	0	0
	3. Yellow	ANALYSIS ACTIVE	 ↓	122		0
	3. Yellow 4. Blue	ANALYSIS ACTIVE		122	blue	0 世 0 世
				● ∅:	blue	

CHECK THE PUSH BUTTONS

Press the START button briefly.

Pressing the following buttons will cause the LEDs to light jointly with the green LED.

DIAGNOSIS 3

CHECK THE DIP-SWITCHES

Press the START button briefly.

Each slide switch S1 to S11 is assigned to a combination of LEDs.

S1	= GREE	Ν

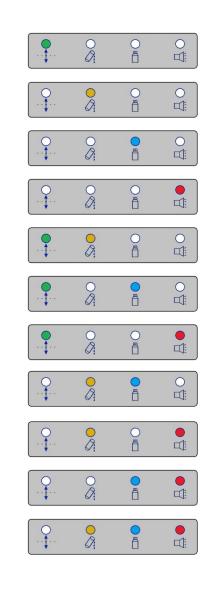
S2 = YELLOW

S3 = BLUE

S4 = RED

S5 = GREEN + YELLOW

S6 = GREEN + BLUE


S7 = GREEN + RED

S8 = YELLOW + BLUE

S9 = YELLOW + RED

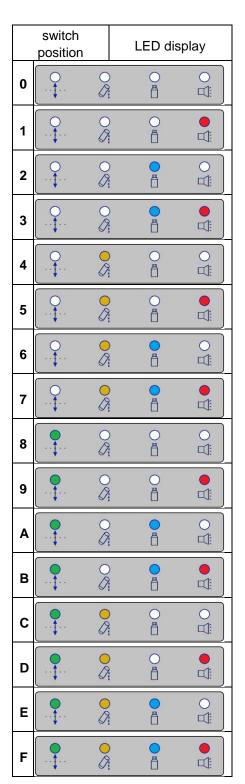
S10 = BLUE + RED

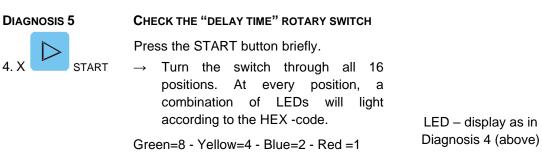
S11 = YELLOW+ BLUE + RED

DIAGNOSIS 4				
3. X	\triangleright	START		

PAGE

CHECK THE "FLUSH TIME" ROTARY SWITCH


Press the START button briefly.


→ Turn the switch through all 16 positions. At every position, a combination of LEDs will light according to the HEX -code.

Green=8 - Yellow=4 - Blue=2 - Red =1

16 position rotary switch

CHECK RELAY OUTPUT REL 1

5. X START

Press the START button briefly.

The relay output REL 1 is checked.

- \rightarrow terminals 7 / 8 / 9
- → The red LED will flash and the relay REL1 will switch on and off at 1 second intervals.

CHECK RELAY OUTPUT REL 2

Press the START button briefly.

The relay output REL 2 is checked.

- \rightarrow terminals 10/11/12
- → The green LED will flash and the relay REL 2 will switch on and off at 1 second intervals.

CHECK RELAY OUTPUT REL 3

Press the START button briefly.

The relay output REL 2 is checked.

- \rightarrow terminals 13/14/15
- → The green and yellow LEDs will flash and the relay REL 3 will switch on and off at 1 second intervals.

green yellow

red

00

0

DANGER

DIAGNOSE 9	CHECK SOLENOID VALVE		yellow		
\triangleright	Press the START button briefly.		0	<u>о</u> П	0
8. X START	The inlet valve is checked.		61	Ш	
	→ The yellow LED will flash and the inlet valve will open and close at 1 second intervals.				
DIAGNOSE 10	CHECK WHITE LED (ACTIVATOR)			blue	
	Press the START button briefly.		0	0	0
9. X START	The function of the LED in the optical path of the measuring-chamber is checked.	·.t	Ø		
	→ The blue LED will flash and the white measurement-LED will switch on and off at 1 second intervals.				
DIAGNOSIS 11	CHECK PERISTALTIC PUMP				red
	Press the START button briefly.	O ↓	O	O	•
10. X START	The function of the reagent dosing-pump is checked.			Ö	
	→ The red LED will flash and the peristaltic pump will pulse on and off at 1 second intervals				
DIAGNOSIS 12	CHECK AGITATOR			blue	red
	Press the START button briefly.	O	0		•
11. X START	The function of the agitator is checked.	· · · • · ·	Ø	Ő	
	→The red + blue LEDs will flash and the agitator will be activated (the stirrer begins to spin).				
DIAGNOSIS 13	CHECK DIGITAL INPUT 'IN'				
	Press the START button briefly.				
12. X START	The function of digital input contact is reviewed.	areen	yellow		
	\rightarrow terminal 16 + 17	green	ycnow	0	0
	ightarrow If the digital input contact is bridged, the		Ø	ð	
	left red + the yellow LED light up.	red	yellow		
	→ If the digital input contact is open, the left green + the yellow LED light up.		• Ø:	<u>О</u> П	○ 型

PAGE

DIAGNOSE 14

CHECK ZERO TRANSMISSION

Press the START button briefly.

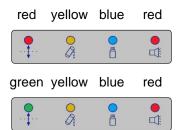
13. X START TH

FLUSH

The function of the zero transmission measurement in the optical path of the measuring-chamber is checked.

- → the first three LEDs from the left (green + yellow + blue) light up
- → For this test, the measuring-chamber should be filled with clean water. Fill the measuringchamber by pressing the FLUSH button
- \rightarrow This test step is required in order to set the zero value of the sample in preparation for the next test \rightarrow step 13
- \rightarrow For a correct measurement, check that switches S6, S7 and S8 are in the right position according to required parameters (\rightarrow page 32).

CHECK COLOUR DETECTION


Press the START button briefly.

The function of colour detection in the optical path of the measuring-chamber is checked.

- \rightarrow all four LEDs light up.
- The LED "analysis result"
- → first left LED (green/red) signals if detection is under (green) or above (red) the limit
- → with the FLUSH button you fill the measuring-chamber with soft or hard water of known condition
- → with the INDICATOR button you dose reagent into the filled measuring-chamber
 - → If the water hardness of your water sample is lower than the colour change point of the limit reagent used, the left LED flashes green
 - \rightarrow water sample is evaluated as GOOD
 - → If the water hardness of your water sample is higher than the colour change point of the limit reagent used, the left LED flashes red
 - \rightarrow water sample is evaluated as BAD
- → the change-over point is no indication of the water hardness since the amount of reagent dosed is undefined
- → the position of switches S6-S9 have a bearing on the evaluation.

Diagnose 15

NOTE

INDICATOR

9 10 11 12

After checking the functions of the unit, exit the test program and change back to analysis mode by switching S10 off.

Close the cover of the control box.

Return the switches to the settings noted at the outset.

Close the cover of the control box. Switch **S11** has currently no function.

S12	Function	
OFF	analysis mode	ON 1 2 3 4 5 6 7 8

RLS Wacon GmbH

Eduard-Ahlborn-Str. 1 D-31137 Hildesheim Germany

Tel. +49 (0) 5121 28 126 0 Fax. +49 (0) 5121 28 126 99

info@rls-wacon.de www.rls-wacon.de 01.07.2021 IN OUR CONTINUING EFFORT TO IMPROVE OUR PRODUCT, INFORMATION IN THIS MANUAL MAY BE CHANGED WITHOUT PRIOR NOTICE